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ABSTRACT 

A numerical method is proposed for solving hyperbolic-parabolic partial differential 
equations with nonlocal boundary condition. The first and second orders of accuracy 

difference schemes are presented. A procedure of modified Gauss elimination method is 
used for solving these difference schemes in the case of a one-dimensional hyperbolic-
parabolic partial differential equations. The method is illustrated by numerical 
examples. 
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1. INTRODUCTION 

Methods of solutions of nonlocal boundary value problems for 
hyperbolic-parabolic differential equations have been studied extensively by 

many researchers. (Vallet, 2003; Glazatov, 1998; Karatoprakliev, 1989; Gerish, 

Kotschote and Zacher, 2004; Vragov, 1983; Nakhushev, 1995; Ramos, 2006; 

Liu, Cui and Sun, 2006; Berdyshev and Karimov, 2006; Salakhitdinov and 
Urinov, 1997; Dzhuraev, 1978; Bazarov and Soltanov, 1995; Ashyralyev and 

Yurtsever, 2005; Ashyralyev and Orazov, 1999). 

 
In (Ashyralyev and Ozdemir, 2007), the nonlocal boundary value problem for 

differential equations 
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in a Hilbert space H with self-adjoint positive definite operator A  was 
considered. 
 

The stability estimates for the solution of problem (1) were established. In 

applications, the stability estimates for the solution of mixed type boundary 
value problems for hyperbolic-parabolic equations were obtained. 

 

In the present paper, the application results of (Ashyralyev and Ozdemir, 2007) 

to numerical solutions of difference schemes of nonlocal boundary value 
problems for the multi-dimensional hyperbolic-parabolic equation are 

considered. The stability estimates for the solution of difference schemes of the 

nonlocal boundary value problem for the multi-dimensional hyperbolic-
parabolic equation are obtained. A procedure of modified Gauss elimination 

method is used for solving these difference schemes in the case of a one-

dimensional hyperbolic-parabolic partial differential equation. The method is 
illustrated by numerical examples. 

 

 

2. DIFFERENCE SCHEMES AND STABILITY 

ESTIMATES 

Let Ω  be the unit open cube in the n -dimensional Euclidean space 

( )0 1, 1n
kx k n< < ≤ ≤ℝ  with boundary , .S SΩ = Ω ∪  In [ ]0,1 ,×Ω  the 

mixed boundary value problem for the multi-dimensional hyperbolic-

parabolic equation 
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is considered, where ( ) ( ) ( )( ) ( ) [ ]( ), , , , 0,1 , ,ra x x x x f t x t x∈ Ω ∈ Ω ∈ ∈ Ωϕ  

( ) [ ]( ), 1,0 ,g t x t x∈ − ∈ Ω  are smooth functions and ( ) 0.ra x a≥ >  The 

discretization of problem (2) is carried out in two steps. In the first 
step, let us define the grid sets 

 

( ) ( ){ 1 1 1,..., , ,..., ,h m n n nx x h m h m m m mΩ = = = =ɶ
 

}0 , 1, 1,..., ,r r r rm N h N r n≤ ≤ = =
 

, .h h h hS SΩ = Ω ∩ Ω = Ω ∩ɶ ɶ  
 

We introduce the Hilbert space ( )2 2h hL L= Ωɶ  of grid functions 

( ) ( ){ }1 1,...,
h

n nx h m h m=ϕ ϕ  defined on ,hΩɶ  equipped with the norm 
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To the differential operator A  generated by problem (2), we assign the 

difference operator x
hA   by the formula 
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acting in the space of grid functions ( ),hu x  satisfying conditions 

( ) 0hu x =  for all .hx S∈  It is known that x
hA  is a self-adjoint positive 

definite operator in 2 .hL  With the help of ,x
hA  we arrive at the nonlocal 

boundary value problem 
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for an infinite system of ordinary differential equations. 

 
In the second step, problem (4) is replaced by difference schemes in 

paper (Ashyralyev and Ozdemir, 2005). So, we have 
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and two types of second order of accuracy difference schemes 
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are obtained. 

 

Theorem  1.   Let τ  and h  be sufficiently small numbers.   Then, 

the solution of difference scheme (5) satisfies the following stability 

estimates: 
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Here, 1M  does not depend on ( ), , hh xτ ϕ  and ( ) ( ),1 , ,h h
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Theorem 2. Let τ  and h  be sufficiently small numbers. Then, for the 

solutions of difference schemes (6) and (7) the following stability inequalities 
 

( ) ( )
2 2

2

1
1

,1
1

max max max
r rh h

h

n
h h h h
k k k k

x jLN k N N k N L N k N
r L

u u u u
−

−
− ≤ ≤ − + ≤ ≤ − ≤ ≤

=

+ − + ∑τ
 

( )

( ) ( )

2 22

2
2

1
2 0 1 0

2 1

1
1

,1 0
1

max

max ,

h hh

r rh
h

h h h h
k k

L Lk N L

n
h h h
k k

x jN k L Lr

M f f f g

g g

−
−

≤ ≤ −

−
−

− + ≤ ≤
=


≤ + − +



+ − + 


∑

τ

τ ϕ
 

( )
2

2
1 1

1 1
max 2

h

h h h

k k k
k N L

u u u
−

+ −
≤ ≤ −

− +τ
 

( ) ( )
2

2

1

1
, 1 0

1

max max
r r r h

h

n
h h h

k k k
x x jN k N N k LLr

u u u
−

−
− ≤ ≤ − + ≤ ≤

=

+ + −∑ τ
 

( ) ( )
2

2

1
2 0 1 0

,
1

r r h
h

n
h h h

x j LLr

M f f f
−

=


≤ + −

∑ τ

 

( ) ( ) ( )
2 2

2

2 1

1 1 0 0 1
,2 1

1

max 2
r rh h

h

n
h h h h h h

k k k
x jk N L LLr

f f f g g g
− −

+ − −
≤ ≤ −

=

+ − + + + −∑τ τ

 



A. Ashyralyev & Y. Ozdemir 

 

38 Malaysian Journal of Mathematical Sciences 
 

( ) ( )
2

2

2
1 1

,1 1
1

max 2 .
r r rh

h

n
h h h h
k k k

x x jN k L Lr

g g g
−

+ −
− + ≤ ≤−

=


+ − + + 


∑τ ϕ
 

 

hold, where 2M  is independent of not only ( ), , hh xτ ϕ  but also 

( ) ( ),1 , ,h h
k kf x k N g x≤ < 0.N k− < ≤  

 

Proofs of Theorems 1-2 are based on symmetry properties of the operator x
hA  

defined by formula (3) and the following theorem on the coercivity inequality 

for the solution of the elliptic difference problem in 2 .hL   

 

Theorem 3. For the solution of the elliptic difference problem  
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the following coercivity inequality holds (Sobolevskii, 1975) 
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3. NUMERICAL RESULTS 

We have not been able to obtain a sharp estimate for constants figuring in the 

stability inequalities. Therefore, the following result of numerical experiments 

of the nonlocal boundary value problem 
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for hyperbolic-parabolic equation is considered. 
 

First, applying first order of accuracy difference scheme (5), we get 

system of equations in matrix form 
 

1 1 0,1 1; 0,n n n n MAU BU CU D n M U U+ −+ + = ≤ ≤ − = = ɶϕ  
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C A=  and D  is ( ) ( )2 1 2 1N N+ × +  identity matrix 
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So, we have the second order difference equation with respect to n with 

matrix coefficients. To solve this difference equation, we have applied a 
procedure of modified Gauss elimination method for difference equation 

with respect to n with matrix coefficients. Hence, we seek a solution of 

the matrix equation in the following form 
 

1 1 1, 1,...,2,1, 0,j j j j MU U j M U+ + += + = − = ɶα β  
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Second, applying second order difference scheme (6) and simply 
formulas 
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So, we have the fourth order difference equation with respect to n with 

matrix coefficients. To solve this difference equation, we have applied 

another procedure of modified Gauss elimination method for difference 
equation with respect to n with matrix coefficients, namely 

 

1 1 1 2 1, 2,...,1,0, (10)j j j j j jU U U j M+ + + + += + + = −α β γ

                  

where ( ), 1,..., 1j j j M= −α β  are ( ) ( )2 1 2 1N N+ × +  square and 

( ), 1,..., 1j j M= −γ  are ( )2 1 1N + ×  column matrices defined by 

formulas 
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where 2,..., 2.j M= −  Here, 1α  and 1β  are ( ) ( )2 1 2 1N N+ × +
 
zero 

matrices, I  is ( ) ( )2 1 2 1N N+ × +
 

identity matrix, 2
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Finally, applying second order of accuracy difference scheme (7), 

we obtain (9) with different matrix coefficients, where 
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and 
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So, we have the fourth order difference equation with respect to n with 

matrix coefficients. To solve this difference equation, we have applied 
same procedure of modified Gauss elimination method for difference 

equation with respect to n with matrix coefficients. Hence, we use 

formulas (10) and (11) for finding of .k
nu   

 

 

Now, the result of the numerical analysis is given.   For their comparison 

errors computed by 

( )
1 2

1
2

1 1
1

max , ,
M

N k
M k n n

k N
n

E u t x u h

−

≤ ≤ −
=

  = −   
∑  

 

of numerical solutions are recorded for different values of N and ,M where 

( ),k nu t x  represents the exact solution and k
nu  represents the numerical 

solution at ( ), .k nt x  The result are shown in the Table 1 for 

10,20,30, 40,50N M= =  and 60,  respectively. 

 
TABLE 1: Comparison or errors for the approximate solution of difference schemes 

 

Method N=10 M=20 N=20 M=40 N=40 M=80 

( )5DS  0.1555 0.0948 0.0549 

( )6DS  0.0846 0.0157 0.0041 

( )7DS  0.0908 0.0182 0.0042 

 

In conclusion, the second order of accuracy difference schemes are more accurate 

comparing with the first order of accuracy difference scheme. 
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